63 research outputs found

    Using embedded hardware monitor cores in critical computer systems

    Get PDF
    The integration of FPGA devices in many different architectures and services makes monitoring and real time detection of errors an important concern in FPGA system design. A monitor is a tool, or a set of tools, that facilitate analytic measurements in observing a given system. The goal of these observations is usually the performance analysis and optimisation, or the surveillance of the system. However, System-on-Chip (SoC) based designs leave few points to attach external tools such as logic analysers. Thus, an embedded error detection core that allows observation of critical system nodes (such as processor cores and buses) should enforce the operation of the FPGA-based system, in order to prevent system failures. The core should not interfere with system performance and must ensure timely detection of errors. This thesis is an investigation onto how a robust hardware-monitoring module can be efficiently integrated in a target PCI board (with FPGA-based application processing features) which is part of a critical computing system. [Continues.

    A Federated DRL Approach for Smart Micro-Grid Energy Control with Distributed Energy Resources

    Full text link
    The prevalence of the Internet of things (IoT) and smart meters devices in smart grids is providing key support for measuring and analyzing the power consumption patterns. This approach enables end-user to play the role of prosumers in the market and subsequently contributes to diminish the carbon footprint and the burden on utility grids. The coordination of trading surpluses of energy that is generated by house renewable energy resources (RERs) and the supply of shortages by external networks (main grid) is a necessity. This paper proposes a hierarchical architecture to manage energy in multiple smart buildings leveraging federated deep reinforcement learning (FDRL) with dynamic load in a distributed manner. Within the context of the developed FDRL-based framework, each agent that is hosted in local building energy management systems (BEMS) trains a local deep reinforcement learning (DRL) model and shares its experience in the form of model hyperparameters to the federation layer in the energy management system (EMS). Simulation studies are conducted using one EMS and up to twenty smart houses that are equipped with photovoltaic (PV) systems and batteries. This iterative training approach enables the proposed discretized soft actor-critic (SAC) agents to aggregate the collected knowledge to expedite the overall learning procedure and reduce costs and CO2 emissions, while the federation approach can mitigate privacy breaches. The numerical results confirm the performance of the proposed framework under different daytime periods, loads, and temperatures.Comment: 7 pages, 6 figures, accepted for publication at IEEE CAMAD 202

    A real-time FPGA-based implementation of a high-performance MIMO-OFDM mobile WiMAX transmitter

    Get PDF
    The Multiple Input Multiple Output (MIMO)-Orthogonal Frequency Division Multiplexing (OFDM) is considered a key technology in modern wireless-access communication systems. The IEEE 802.16e standard, also denoted as mobile WiMAX, utilizes the MIMO-OFDM technology and it was one of the first initiatives towards the roadmap of fourth generation systems. This paper presents the PHY-layer design, implementation and validation of a high-performance real-time 2x2 MIMO mobile WiMAX transmitter that accounts for low-level deployment issues and signal impairments. The focus is mainly laid on the impact of the selected high bandwidth, which scales the implementation complexity of the baseband signal processing algorithms. The latter also requires an advanced pipelined memory architecture to timely address the datapath operations that involve high memory utilization. We present in this paper a first evaluation of the extracted results that demonstrate the performance of the system using a 2x2 MIMO channel emulation.Postprint (published version

    Adaptive block diagonalization and user scheduling with out of cluster interference

    Get PDF
    This proceeding at: European Wireless 2014, took place 2014 Mai, 14-16, in Barcelona (España). The event wb site of http://www.ew2014.org/Interference in a cellular network is one of the main impairments that needs to be overcome. Coordination among the Base Stations may enable the use of the interference to improve the transmission rate at the cost of increased computational complexity and more stringent backhaul and feedback requirements. Practical problems of global coordination can be reduced through clustering which, in turn, will introduce Out of Cluster Interference (OCI). OCI can seriously hamper the advantages brought by precoding techniques like Block Diagonalization (BD). In this work we propose a mixed transmission strategy using BD and Single User transmission that is able to overcome the problems introduced by the OCI, in combination with a low complexity scheduling algorithm that enables an increased transmission rate in a multiuser scenario.The research leading to these results has received funding from the Spanish Ministry of Economy and Competitiveness (Ministerio de Economía y Competitividad) under projects TEC2011-29006-C03-01(GRE3N-PHY), TEC2011-29006-C03-02 (GRE3N-LINK-MAC), TEC2011-29006-C03-03 (GRE3N-SYST).Publicad

    Energy profiling of FPGA-based PHY-layer building blocks encountered in modern wireless communication systems

    Get PDF
    Proceeding at: IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), took place 2014, Jun, 22-25 in Coruña (españa). The event web site of http://www.gtec.udc.es/sam2014/ .Characterizing the energy cost of different physical (PHY) layer building blocks is becoming increasingly important in modern cellular-based communications, considering the cross sector requirements for performance enhancements and energy savings. This paper presents energy profiling metrics of different PHY-layer FPGA implementations encountered in modern wireless communication systems. The results give an insight of the distribution of the consumed energy in different baseband building blocks or configurations before and after applying power optimizations in the FPGA design and implementation.This work was partially supported by: the Spanish Government under projects TEC2011-29006-C03-01 (GRE3N-PHY), TEC2011-29006-C03-02 (GRE3N-LINKMAC) and TEC2011-29006-C03-03 (GRE3N-SYST); and the European Commission under project NEWCOM# (GA 318306).Publicad

    Distributed Sensing, Computing, Communication, and Control Fabric: A Unified Service-Level Architecture for 6G

    Full text link
    With the advent of the multimodal immersive communication system, people can interact with each other using multiple devices for sensing, communication and/or control either onsite or remotely. As a breakthrough concept, a distributed sensing, computing, communications, and control (DS3C) fabric is introduced in this paper for provisioning 6G services in multi-tenant environments in a unified manner. The DS3C fabric can be further enhanced by natively incorporating intelligent algorithms for network automation and managing networking, computing, and sensing resources efficiently to serve vertical use cases with extreme and/or conflicting requirements. As such, the paper proposes a novel end-to-end 6G system architecture with enhanced intelligence spanning across different network, computing, and business domains, identifies vertical use cases and presents an overview of the relevant standardization and pre-standardization landscape
    • …
    corecore